skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Borun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The discovery of novel thermoset shape memory polymers (TSMPs) for additive manufacturing can be accelerated through the use of a deep‐generative algorithm, minimizing the need for laborious traditional laboratory experiments. This study is the first to introduce an innovative approach that uses a deep generative learning model, namely the conditional variational autoencoder (CVAE), to discover novel TSMPs with lower glass transition temperature () and high recovery stress values (). In this study, specific chemical groups, such as epoxy, amine, thiol, and vinyl, are integrated as constraints to generate novel TSMPs while preserving the essential reaction properties. To address the challenges posed by a small dataset, the CVAE model is used with graph‐extracted features. Unlike previous studies focused on single‐polymer systems, this research extends to two‐monomer samples, discovering 22 novel TSMPs. This approach has practical implications in additive manufacturing, biomedical devices, aerospace, and robotics for the discovery of novel samples from limited data. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026